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Exercise 2.2.16 If a vector b is a linear combination of
the columns of A, show that the system Ax = b is consis-
tent (that is, it has at least one solution.)

Exercise 2.2.17 If a system Ax = b is inconsistent (no
solution), show that b is not a linear combination of the
columns of A.

Exercise 2.2.18 Let x1 and x2 be solutions to the homo-
geneous system Ax = 0.

a. Show that x1 +x2 is a solution to Ax = 0.

b. Show that tx1 is a solution to Ax= 0 for any scalar
t.

Exercise 2.2.19 Suppose x1 is a solution to the system
Ax = b. If x0 is any nontrivial solution to the associ-
ated homogeneous system Ax = 0, show that x1+ tx0, t a
scalar, is an infinite one parameter family of solutions to
Ax = b. [Hint: Example 2.1.7 Section 2.1.]

Exercise 2.2.20 Let A and B be matrices of the same
size. If x is a solution to both the system Ax = 0 and the
system Bx = 0, show that x is a solution to the system
(A+B)x = 0.

Exercise 2.2.21 If A is m×n and Ax = 0 for every x in
Rn, show that A = 0 is the zero matrix. [Hint: Consider
Ae j where e j is the jth column of In; that is, e j is the
vector in Rn with 1 as entry j and every other entry 0.]

Exercise 2.2.22 Prove part (1) of Theorem 2.2.2.

Exercise 2.2.23 Prove part (2) of Theorem 2.2.2.

2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an m×n matrix, the product Ax was defined
for any n-column x in Rn as follows: If A =

[
a1 a2 · · · an

]
where the a j are the columns of A, and if

x =




x1

x2
...

xn


, Definition 2.5 reads

Ax = x1a1 + x2a2 + · · ·+ xnan (2.5)

This was motivated as a way of describing systems of linear equations with coefficient matrix A. Indeed
every such system has the form Ax = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a way of multiplying matrices in gen-
eral, and then investigate matrix algebra for its own sake. While it shares several properties of ordinary
arithmetic, it will soon become clear that matrix arithmetic is different in a number of ways.

Matrix multiplication is closely related to composition of transformations.
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Composition and Matrix Multiplication

Sometimes two transformations “link” together as follows:

Rk T−→Rn S−→ Rm

In this case we can apply T first and then apply S, and the result is a new transformation

S ◦T : Rk→ Rm

called the composite of S and T , defined by

(S ◦T )(x) = S [T (x)] for all x in Rk

T S

S◦T

Rk Rn Rm

The action of S◦T can be described as “first T then S ” (note the order!)6.
This new transformation is described in the diagram. The reader will have
encountered composition of ordinary functions: For example, consider

R
g−→ R

f−→ R where f (x) = x2 and g(x) = x+1 for all x in R. Then

( f ◦g)(x) = f [g(x)] = f (x+1) = (x+1)2

(g◦ f )(x) = g [ f (x)] = g(x2) = x2 +1

for all x in R.

Our concern here is with matrix transformations. Suppose that A is an m×n matrix and B is an n× k

matrix, and let Rk TB−→ Rn TA−→ Rm be the matrix transformations induced by B and A respectively, that is:

TB(x) = Bx for all x in Rk and TA(y) = Ay for all y in Rn

Write B =
[

b1 b2 · · · bk

]
where b j denotes column j of B for each j. Hence each b j is an n-vector

(B is n× k) so we can form the matrix-vector product Ab j. In particular, we obtain an m× k matrix
[

Ab1 Ab2 · · · Abk

]

with columns Ab1, Ab2, · · · , Abk. Now compute (TA ◦TB)(x) for any x =




x1

x2
...

xk


 in Rk:

(TA ◦TB)(x) = TA [TB(x)] Definition of TA ◦TB

= A(Bx) A and B induce TA and TB

= A(x1b1 + x2b2 + · · ·+ xkbk) Equation 2.5 above
= A(x1b1)+A(x2b2)+ · · ·+A(xkbk) Theorem 2.2.2
= x1(Ab1)+ x2(Ab2)+ · · ·+ xk(Abk) Theorem 2.2.2
=

[
Ab1 Ab2 · · · Abk

]
x Equation 2.5 above

Because x was an arbitrary vector in Rn, this shows that TA ◦TB is the matrix transformation induced by
the matrix

[
Ab1 Ab2 · · · Abn

]
. This motivates the following definition.

6When reading the notation S ◦T , we read S first and then T even though the action is “first T then S ”. This annoying state
of affairs results because we write T (x) for the effect of the transformation T on x, with T on the left. If we wrote this instead
as (x)T , the confusion would not occur. However the notation T (x) is well established.
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Definition 2.9 Matrix Multiplication

Let A be an m×n matrix, let B be an n× k matrix, and write B =
[

b1 b2 · · · bk

]
where b j is

column j of B for each j. The product matrix AB is the m× k matrix defined as follows:

AB = A
[

b1 b2 · · · bk

]
=
[

Ab1 Ab2 · · · Abk

]

Thus the product matrix AB is given in terms of its columns Ab1, Ab2, . . . , Abn: Column j of AB is the
matrix-vector product Ab j of A and the corresponding column b j of B. Note that each such product Ab j

makes sense by Definition 2.5 because A is m×n and each b j is in Rn (since B has n rows). Note also that
if B is a column matrix, this definition reduces to Definition 2.5 for matrix-vector multiplication.

Given matrices A and B, Definition 2.9 and the above computation give

A(Bx) =
[

Ab1 Ab2 · · · Abn

]
x = (AB)x

for all x in Rk. We record this for reference.

Theorem 2.3.1

Let A be an m×n matrix and let B be an n× k matrix. Then the product matrix AB is m× k and
satisfies

A(Bx) = (AB)x for all x in Rk

Here is an example of how to compute the product AB of two matrices using Definition 2.9.

Example 2.3.1

Compute AB if A =




2 3 5
1 4 7
0 1 8


 and B =




8 9
7 2
6 1


.

Solution. The columns of B are b1 =




8
7
6


 and b2 =




9
2
1


, so Definition 2.5 gives

Ab1 =




2 3 5
1 4 7
0 1 8






8
7
6


=




67
78
55


 and Ab2 =




2 3 5
1 4 7
0 1 8






9
2
1


=




29
24
10




Hence Definition 2.9 above gives AB =
[

Ab1 Ab2
]
=




67 29
78 24
55 10


.
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Example 2.3.2

If A is m×n and B is n× k, Theorem 2.3.1 gives a simple formula for the composite of the matrix
transformations TA and TB:

TA ◦TB = TAB

Solution. Given any x in Rk,

(TA ◦TB)(x) = TA[TB(x)]

= A[Bx]

= (AB)x

= TAB(x)

While Definition 2.9 is important, there is another way to compute the matrix product AB that gives
a way to calculate each individual entry. In Section 2.2 we defined the dot product of two n-tuples to be
the sum of the products of corresponding entries. We went on to show (Theorem 2.2.5) that if A is an
m×n matrix and x is an n-vector, then entry j of the product Ax is the dot product of row j of A with x.
This observation was called the “dot product rule” for matrix-vector multiplication, and the next theorem
shows that it extends to matrix multiplication in general.

Theorem 2.3.2: Dot Product Rule

Let A and B be matrices of sizes m×n and n× k, respectively. Then the (i, j)-entry of AB is the
dot product of row i of A with column j of B.

Proof. Write B =
[

b1 b2 · · · bn

]
in terms of its columns. Then Ab j is column j of AB for each j.

Hence the (i, j)-entry of AB is entry i of Ab j, which is the dot product of row i of A with b j. This proves
the theorem.

Thus to compute the (i, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B, multiply corresponding entries, and add the results.










=







row i column j (i, j)-entry

A B AB

Note that this requires that the rows of A must be the same length as the columns of B. The following rule
is useful for remembering this and for deciding the size of the product matrix AB.
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Compatibility Rule

A B

m× n n′ × k

Let A and B denote matrices. If A is m×n and B is n′× k, the product AB

can be formed if and only if n = n′. In this case the size of the product
matrix AB is m× k, and we say that AB is defined, or that A and B are
compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the following convention:

Convention

Whenever a product of matrices is written, it is tacitly assumed that the sizes of the factors are such that
the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 2.3.1.

Example 2.3.3

Compute AB if A =




2 3 5
1 4 7
0 1 8


 and B =




8 9
7 2
6 1


.

Solution. Here A is 3×3 and B is 3×2, so the product matrix AB is defined and will be of size
3×2. Theorem 2.3.2 gives each entry of AB as the dot product of the corresponding row of A with
the corresponding column of B j that is,

AB =




2 3 5
1 4 7
0 1 8






8 9
7 2
6 1


=




2 ·8+3 ·7+5 ·6 2 ·9+3 ·2+5 ·1
1 ·8+4 ·7+7 ·6 1 ·9+4 ·2+7 ·1
0 ·8+1 ·7+8 ·6 0 ·9+1 ·2+8 ·1


=




67 29
78 24
55 10




Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the (1, 3)- and (2, 4)-entries of AB where

A =

[
3 −1 2
0 1 4

]
and B =




2 1 6 0
0 2 3 4
−1 0 5 8


 .

Then compute AB.

Solution. The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B (highlighted
in the following display), computed by multiplying corresponding entries and adding the results.

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


 (1, 3)-entry = 3 ·6+(−1) ·3+2 ·5= 25
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Similarly, the (2, 4)-entry of AB involves row 2 of A and column 4 of B.

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


 (2, 4)-entry = 0 ·0+1 ·4+4 ·8 = 36

Since A is 2×3 and B is 3×4, the product is 2×4.

AB =

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


=

[
4 1 25 12
−4 2 23 36

]

Example 2.3.5

If A =
[

1 3 2
]

and B =




5
6
4


, compute A2, AB, BA, and B2 when they are defined.7

Solution. Here, A is a 1×3 matrix and B is a 3×1 matrix, so A2 and B2 are not defined. However,
the compatibility rule reads

A B

1×3 3×1
and

B A

3×1 1×3

so both AB and BA can be formed and these are 1×1 and 3×3 matrices, respectively.

AB =
[

1 3 2
]



5
6
4


=

[
1 ·5+3 ·6+2 ·4

]
=
[

31
]

BA =




5
6
4


[ 1 3 2

]
=




5 ·1 5 ·3 5 ·2
6 ·1 6 ·3 6 ·2
4 ·1 4 ·3 4 ·2


=




5 15 10
6 18 12
4 12 8




Unlike numerical multiplication, matrix products AB and BA need not be equal. In fact they need not
even be the same size, as Example 2.3.5 shows. It turns out to be rare that AB = BA (although it is by no
means impossible), and A and B are said to commute when this happens.

Example 2.3.6

Let A =

[
6 9
−4 −6

]
and B =

[
1 2
−1 0

]
. Compute A2, AB, BA.

7As for numbers, we write A2 = A ·A, A3 = A ·A ·A, etc. Note that A2 is defined if and only if A is of size n× n for some n.
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Solution. A2 =

[
6 9
−4 −6

][
6 9
−4 −6

]
=

[
0 0
0 0

]
, so A2 = 0 can occur even if A 6= 0. Next,

AB =

[
6 9
−4 −6

][
1 2
−1 0

]
=

[
−3 12

2 −8

]

BA =

[
1 2
−1 0

][
6 9
−4 −6

]
=

[
−2 −3
−6 −9

]

Hence AB 6= BA, even though AB and BA are the same size.

Example 2.3.7

If A is any matrix, then IA = A and AI = A, and where I denotes an identity matrix of a size so that
the multiplications are defined.

Solution. These both follow from the dot product rule as the reader should verify. For a more
formal proof, write A =

[
a1 a2 · · · an

]
where a j is column j of A. Then Definition 2.9 and

Example 2.2.11 give

IA =
[

Ia1 Ia2 · · · Ian

]
=
[

a1 a2 · · · an

]
= A

If e j denotes column j of I, then Ae j = a j for each j by Example 2.2.12. Hence Definition 2.9
gives:

AI = A
[

e1 e2 · · · en

]
=
[

Ae1 Ae2 · · · Aen

]
=
[

a1 a2 · · · an

]
= A

The following theorem collects several results about matrix multiplication that are used everywhere in
linear algebra.

Theorem 2.3.3

Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the indicated
matrix products are defined. Then:

1. IA = A and AI = A where I denotes an
identity matrix.

2. A(BC) = (AB)C.

3. A(B+C) = AB+AC.

4. (B+C)A = BA+CA.

5. a(AB) = (aA)B = A(aB).

6. (AB)T = BT AT .

Proof. Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave (3) and (5) as exercises.

1. If C =
[

c1 c2 · · · ck

]
in terms of its columns, then BC =

[
Bc1 Bc2 · · · Bck

]
by Defini-
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tion 2.9, so

A(BC) =
[

A(Bc1) A(Bc2) · · · A(Bck)
]

Definition 2.9

=
[
(AB)c1 (AB)c2 · · · (AB)ck)

]
Theorem 2.3.1

= (AB)C Definition 2.9

4. We know (Theorem 2.2.2) that (B+C)x = Bx+Cx holds for every column x. If we write
A =

[
a1 a2 · · · an

]
in terms of its columns, we get

(B+C)A =
[
(B+C)a1 (B+C)a2 · · · (B+C)an

]
Definition 2.9

=
[

Ba1 +Ca1 Ba2 +Ca2 · · · Ban +Can

]
Theorem 2.2.2

=
[

Ba1 Ba2 · · · Ban

]
+
[

Ca1 Ca2 · · · Can

]
Adding Columns

= BA+CA Definition 2.9

6. As in Section 2.1, write A = [ai j] and B = [bi j], so that AT = [a′i j] and BT = [b′i j] where a′i j = a ji and
b′ji = bi j for all i and j. If ci j denotes the (i, j)-entry of BT AT , then ci j is the dot product of row i of
BT with column j of AT . Hence

ci j = b′i1a′1 j +b′i2a′2 j + · · ·+b′ima′m j = b1ia j1 +b2ia j2 + · · ·+bmia jm

= a j1b1i +a j2b2i + · · ·+a jmbmi

But this is the dot product of row j of A with column i of B; that is, the ( j, i)-entry of AB; that is,
the (i, j)-entry of (AB)T . This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix multiplication. It asserts that the
equation A(BC) = (AB)C holds for all matrices (if the products are defined). Hence this product is the
same no matter how it is formed, and so is written simply as ABC. This extends: The product ABCD of
four matrices can be formed several ways—for example, (AB)(CD), [A(BC)]D, and A[B(CD)]—but the
associative law implies that they are all equal and so are written as ABCD. A similar remark applies in
general: Matrix products can be written unambiguously with no parentheses.

However, a note of caution about matrix multiplication must be taken: The fact that AB and BA need
not be equal means that the order of the factors is important in a product of matrices. For example ABCD

and ADCB may not be equal.

Warning

If the order of the factors in a product of matrices is changed, the product matrix may change
(or may not be defined). Ignoring this warning is a source of many errors by students of linear
algebra!

Properties 3 and 4 in Theorem 2.3.3 are called distributive laws. They assert that A(B+C)= AB+AC

and (B+C)A = BA+CA hold whenever the sums and products are defined. These rules extend to more
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than two terms and, together with Property 5, ensure that many manipulations familiar from ordinary
algebra extend to matrices. For example

A(2B−3C+D−5E) = 2AB−3AC+AD−5AE

(A+3C−2D)B = AB+3CB−2DB

Note again that the warning is in effect: For example A(B−C) need not equal AB−CA. These rules make
possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression A(BC−CD)+A(C−B)D−AB(C−D).

Solution.

A(BC−CD)+A(C−B)D−AB(C−D) = A(BC)−A(CD)+(AC−AB)D− (AB)C+(AB)D

= ABC−ACD+ACD−ABD−ABC+ABD

= 0

Example 2.3.9 and Example 2.3.10 below show how we can use the properties in Theorem 2.3.2 to
deduce other facts about matrix multiplication. Matrices A and B are said to commute if AB = BA.

Example 2.3.9

Suppose that A, B, and C are n×n matrices and that both A and B commute with C; that is,
AC =CA and BC =CB. Show that AB commutes with C.

Solution. Showing that AB commutes with C means verifying that (AB)C =C(AB). The
computation uses the associative law several times, as well as the given facts that AC =CA and
BC =CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B =C(AB)

Example 2.3.10

Show that AB = BA if and only if (A−B)(A+B) = A2−B2.

Solution. The following always holds:

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2 (2.6)

Hence if AB = BA, then (A−B)(A+B) = A2−B2 follows. Conversely, if this last equation holds,
then equation (2.6) becomes

A2−B2 = A2 +AB−BA−B2

This gives 0 = AB−BA, and AB = BA follows.
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In Section 2.2 we saw (in Theorem 2.2.1) that every system of linear equations has the form

Ax = b

where A is the coefficient matrix, x is the column of variables, and b is the constant matrix. Thus the
system of linear equations becomes a single matrix equation. Matrix multiplication can yield information
about such a system.

Example 2.3.11

Consider a system Ax = b of linear equations where A is an m×n matrix. Assume that a matrix C

exists such that CA = In. If the system Ax = b has a solution, show that this solution must be Cb.
Give a condition guaranteeing that Cb is in fact a solution.

Solution. Suppose that x is any solution to the system, so that Ax = b. Multiply both sides of this
matrix equation by C to obtain, successively,

C(Ax) =Cb, (CA)x =Cb, Inx =Cb, x =Cb

This shows that if the system has a solution x, then that solution must be x =Cb, as required. But
it does not guarantee that the system has a solution. However, if we write x1 =Cb, then

Ax1 = A(Cb) = (AC)b

Thus x1 =Cb will be a solution if the condition AC = Im is satisfied.

The ideas in Example 2.3.11 lead to important information about matrices; this will be pursued in the
next section.

Block Multiplication

Definition 2.10 Block Partition of a Matrix

It is often useful to consider matrices whose entries are themselves matrices (called blocks). A
matrix viewed in this way is said to be partitioned into blocks.

For example, writing a matrix B in the form

B =
[

b1 b2 · · · bk

]
where the b j are the columns of B

is such a block partition of B. Here is another example.

Consider the matrices

A =




1 0 0 0 0
0 1 0 0 0
2 −1 4 2 1
3 1 −1 7 5


=

[
I2 023

P Q

]
and B =




4 −2
5 6
7 3
−1 0

1 6



=

[
X

Y

]
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where the blocks have been labelled as indicated. This is a natural way to partition A into blocks in view of
the blocks I2 and 023 that occur. This notation is particularly useful when we are multiplying the matrices
A and B because the product AB can be computed in block form as follows:

AB =

[
I 0
P Q

][
X

Y

]
=

[
IX +0Y

PX +QY

]
=

[
X

PX +QY

]
=




4 −2
5 6

30 8
8 27




This is easily checked to be the product AB, computed in the conventional manner.

In other words, we can compute the product AB by ordinary matrix multiplication, using blocks as

entries. The only requirement is that the blocks be compatible. That is, the sizes of the blocks must be

such that all (matrix) products of blocks that occur make sense. This means that the number of columns
in each block of A must equal the number of rows in the corresponding block of B.

Theorem 2.3.4: Block Multiplication

If matrices A and B are partitioned compatibly into blocks, the product AB can be computed by
matrix multiplication using blocks as entries.

We omit the proof.

We have been using two cases of block multiplication. If B =
[

b1 b2 · · · bk

]
is a matrix where

the b j are the columns of B, and if the matrix product AB is defined, then we have

AB = A
[

b1 b2 · · · bk

]
=
[

Ab1 Ab2 · · · Abk

]

This is Definition 2.9 and is a block multiplication where A = [A] has only one block. As another illustra-
tion,

Bx =
[

b1 b2 · · · bk

]




x1

x2
...

xk


= x1b1 + x2b2 + · · ·+ xkbk

where x is any k×1 column matrix (this is Definition 2.5).

It is not our intention to pursue block multiplication in detail here. However, we give one more example
because it will be used below.

Theorem 2.3.5

Suppose matrices A =

[
B X

0 C

]
and A1 =

[
B1 X1

0 C1

]
are partitioned as shown where B and B1

are square matrices of the same size, and C and C1 are also square of the same size. These are
compatible partitionings and block multiplication gives

AA1 =

[
B X

0 C

][
B1 X1

0 C1

]
=

[
BB1 BX1+XC1

0 CC1

]
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Example 2.3.12

Obtain a formula for Ak where A =

[
I X

0 0

]
is square and I is an identity matrix.

Solution. We have A2 =

[
I X

0 0

][
I X

0 0

]
=

[
I2 IX +X0
0 02

]
=

[
I X

0 0

]
= A. Hence

A3 = AA2 = AA = A2 = A. Continuing in this way, we see that Ak = A for every k ≥ 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful in computing
products of matrices in a computer with limited memory capacity. The matrices are partitioned into blocks
in such a way that each product of blocks can be handled. Then the blocks are stored in auxiliary memory
and their products are computed one by one.

Directed Graphs

The study of directed graphs illustrates how matrix multiplication arises in ways other than the study of
linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by arrows (called edges). For
example, the vertices could represent cities and the edges available flights. If the graph has n vertices
v1, v2, . . . , vn, the adjacency matrix A =

[
ai j

]
is the n×n matrix whose (i, j)-entry ai j is 1 if there is an

edge from v j to vi (note the order), and zero otherwise. For example, the adjacency matrix of the directed

graph shown is A =




1 1 0
1 0 1
1 0 0


.

v1 v2

v3

A path of length r (or an r-path) from vertex j to vertex i is a sequence
of r edges leading from v j to vi. Thus v1→ v2→ v1→ v1→ v3 is a 4-path
from v1 to v3 in the given graph. The edges are just the paths of length 1,
so the (i, j)-entry ai j of the adjacency matrix A is the number of 1-paths
from v j to vi. This observation has an important extension:

Theorem 2.3.6

If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of Ar is the
number of r-paths v j→ vi.

As an illustration, consider the adjacency matrix A in the graph shown. Then

A =




1 1 0
1 0 1
1 0 0


 , A2 =




2 1 1
2 1 0
1 1 0


 , and A3 =




4 2 1
3 2 1
2 1 1




Hence, since the (2, 1)-entry of A2 is 2, there are two 2-paths v1→ v2 (in fact they are v1→ v1→ v2 and
v1 → v3 → v2). Similarly, the (2, 3)-entry of A2 is zero, so there are no 2-paths v3 → v2, as the reader
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can verify. The fact that no entry of A3 is zero shows that it is possible to go from any vertex to any other
vertex in exactly three steps.

To see why Theorem 2.3.6 is true, observe that it asserts that

the (i, j)-entry of Ar equals the number of r-paths v j→ vi (2.7)

holds for each r ≥ 1. We proceed by induction on r (see Appendix C). The case r = 1 is the definition of
the adjacency matrix. So assume inductively that (2.7) is true for some r ≥ 1; we must prove that (2.7)
also holds for r+1. But every (r+1)-path v j→ vi is the result of an r-path v j→ vk for some k, followed
by a 1-path vk→ vi. Writing A =

[
ai j

]
and Ar =

[
bi j

]
, there are bk j paths of the former type (by induction)

and aik of the latter type, and so there are aikbk j such paths in all. Summing over k, this shows that there
are

ai1b1 j +ai2b2 j + · · ·+ainbn j (r+1)-paths v j→ vi

But this sum is the dot product of the ith row
[

ai1 ai2 · · · ain

]
of A with the jth column

[
b1 j b2 j · · · bn j

]T
of Ar. As such, it is the (i, j)-entry of the matrix product ArA = Ar+1. This shows that (2.7) holds for
r+1, as required.

Exercises for 2.3

Exercise 2.3.1 Compute the following matrix products.

[
1 3
0 −2

][
2 −1
0 1

]
a.

[
1 −1 2
2 0 4

]


2 3 1
1 9 7
−1 0 2


b.

[
5 0 −7
1 5 9

]


3
1
−1


c.

[
1 3 −3

]



3 0
−2 1

0 6


d.




1 0 0
0 1 0
0 0 1






3 −2
5 −7
9 7


e.

[
1 −1 3

]



2
1
−8


f.




2
1
−7


[ 1 −1 3

]
g.

[
3 1
5 2

][
2 −1
−5 3

]
h.

[
2 3 1
5 7 4

]


a 0 0
0 b 0
0 0 c


i.




a 0 0
0 b 0
0 0 c






a′ 0 0
0 b′ 0
0 0 c′


j.

Exercise 2.3.2 In each of the following cases, find all
possible products A2, AB, AC, and so on.

a. A =

[
1 2 3
−1 0 0

]
, B =

[
1 −2
1
2 3

]
,

C =



−1 0

2 5
0 5




b. A =

[
1 2 4
0 1 −1

]
, B =

[
−1 6

1 0

]
,

C =




2 0
−1 1

1 2
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Exercise 2.3.3 Find a, b, a1, and b1 if:

a.

[
a b

a1 b1

][
3 −5
−1 2

]
=

[
1 −1
2 0

]

b.

[
2 1
−1 2

][
a b

a1 b1

]
=

[
7 2
−1 4

]

Exercise 2.3.4 Verify that A2−A−6I = 0 if:

[
3 −1
0 −2

]
a.

[
2 2
2 −1

]
b.

Exercise 2.3.5

Given A =

[
1 −1
0 1

]
, B =

[
1 0 −2
3 1 0

]
,

C =




1 0
2 1
5 8


, and D =

[
3 −1 2
1 0 5

]
, verify the

following facts from Theorem 2.3.1.

A(B−D) = AB−ADa. A(BC) = (AB)Cb.

(CD)T = DTCTc.

Exercise 2.3.6 Let A be a 2×2 matrix.

a. If A commutes with

[
0 1
0 0

]
, show that

A =

[
a b

0 a

]
for some a and b.

b. If A commutes with

[
0 0
1 0

]
, show that

A =

[
a 0
c a

]
for some a and c.

c. Show that A commutes with every 2×2 matrix

if and only if A =

[
a 0
0 a

]
for some a.

Exercise 2.3.7

a. If A2 can be formed, what can be said about the
size of A?

b. If AB and BA can both be formed, describe the
sizes of A and B.

c. If ABC can be formed, A is 3× 3, and C is 5× 5,
what size is B?

Exercise 2.3.8

a. Find two 2×2 matrices A such that A2 = 0.

b. Find three 2× 2 matrices A such that (i) A2 = I;
(ii) A2 = A.

c. Find 2×2 matrices A and B such that AB = 0 but
BA 6= 0.

Exercise 2.3.9 Write P =




1 0 0
0 0 1
0 1 0


, and let A be

3×n and B be m×3.

a. Describe PA in terms of the rows of A.

b. Describe BP in terms of the columns of B.

Exercise 2.3.10 Let A, B, and C be as in Exercise 2.3.5.
Find the (3, 1)-entry of CAB using exactly six numerical
multiplications.

Exercise 2.3.11 Compute AB, using the indicated block
partitioning.

A =




2 −1 3 1
1 0 1 2
0 0 1 0
0 0 0 1


 B =




1 2 0
−1 0 0

0 5 1
1 −1 0




Exercise 2.3.12 In each case give formulas for all pow-
ers A, A2, A3, . . . of A using the block decomposition
indicated.

a. A =




1 0 0
1 1 −1
1 −1 1




b. A =




1 −1 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1




Exercise 2.3.13 Compute the following using block
multiplication (all blocks are k× k).

[
I X

−Y I

][
I 0

Y I

]
a.

[
I X

0 I

][
I −X

0 I

]
b.

[
I X

][
I X

]T
c.

[
I XT

][
−X I

]T
d.

[
I X

0 −I

]n

any n≥ 1e.

[
0 X

I 0

]n

any n≥ 1f.
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Exercise 2.3.14 Let A denote an m×n matrix.

a. If AX = 0 for every n× 1 matrix X , show that
A = 0.

b. If YA = 0 for every 1×m matrix Y , show that
A = 0.

Exercise 2.3.15

a. If U =

[
1 2
0 −1

]
, and AU = 0, show that A = 0.

b. Let U be such that AU = 0 implies that A = 0. If
PU = QU , show that P = Q.

Exercise 2.3.16 Simplify the following expressions
where A, B, and C represent matrices.

a. A(3B−C)+ (A−2B)C+2B(C+2A)

b. A(B+C−D)+B(C−A+D)− (A+B)C
+(A−B)D

c. AB(BC−CB)+ (CA−AB)BC+CA(A−B)C

d. (A−B)(C−A)+ (C−B)(A−C)+ (C−A)2

Exercise 2.3.17 If A =

[
a b

c d

]
where a 6= 0, show

that A factors in the form A =

[
1 0
x 1

][
y z

0 w

]
.

Exercise 2.3.18 If A and B commute with C, show that
the same is true of:

A+Ba. kA, k any scalarb.

Exercise 2.3.19 If A is any matrix, show that both AAT

and AT A are symmetric.

Exercise 2.3.20 If A and B are symmetric, show that AB

is symmetric if and only if AB = BA.

Exercise 2.3.21 If A is a 2×2 matrix, show that
AT A = AAT if and only if A is symmetric or

A =

[
a b

−b a

]
for some a and b.

Exercise 2.3.22

a. Find all symmetric 2× 2 matrices A such that
A2 = 0.

b. Repeat (a) if A is 3×3.

c. Repeat (a) if A is n×n.

Exercise 2.3.23 Show that there exist no 2× 2 matri-
ces A and B such that AB−BA = I. [Hint: Examine the
(1, 1)- and (2, 2)-entries.]

Exercise 2.3.24 Let B be an n× n matrix. Suppose
AB = 0 for some nonzero m× n matrix A. Show that
no n×n matrix C exists such that BC = I.

Exercise 2.3.25 An autoparts manufacturer makes fend-
ers, doors, and hoods. Each requires assembly and pack-
aging carried out at factories: Plant 1, Plant 2, and Plant
3. Matrix A below gives the number of hours for assem-
bly and packaging, and matrix B gives the hourly rates at
the three plants. Explain the meaning of the (3, 2)-entry
in the matrix AB. Which plant is the most economical to
operate? Give reasons.

Assembly Packaging
Fenders
Doors
Hoods




12 2
21 3
10 2


 = A

Plant 1 Plant 2 Plant 3
Assembly
Packaging

[
21 18 20
14 10 13

]
= B

Exercise 2.3.26 For the directed graph below, find the
adjacency matrix A, compute A3, and determine the num-
ber of paths of length 3 from v1 to v4 and from v2 to v3.

v1 v2

v3v4

Exercise 2.3.27 In each case either show the statement
is true, or give an example showing that it is false.

a. If A2 = I, then A = I.

b. If AJ = A, then J = I.

c. If A is square, then (AT )3 = (A3)T .

d. If A is symmetric, then I+A is symmetric.

e. If AB = AC and A 6= 0, then B =C.
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f. If A 6= 0, then A2 6= 0.

g. If A has a row of zeros, so also does BA for all B.

h. If A commutes with A+B, then A commutes with
B.

i. If B has a column of zeros, so also does AB.

j. If AB has a column of zeros, so also does B.

k. If A has a row of zeros, so also does AB.

l. If AB has a row of zeros, so also does A.

Exercise 2.3.28

a. If A and B are 2× 2 matrices whose rows sum to
1, show that the rows of AB also sum to 1.

b. Repeat part (a) for the case where A and B are
n×n.

Exercise 2.3.29 Let A and B be n×n matrices for which
the systems of equations Ax = 0 and Bx = 0 each have
only the trivial solution x = 0. Show that the system
(AB)x = 0 has only the trivial solution.

Exercise 2.3.30 The trace of a square matrix A, denoted
tr A, is the sum of the elements on the main diagonal of
A. Show that, if A and B are n×n matrices:

tr (A+B) = tr A+ tr B.a.

tr (kA) = k tr (A) for any number k.b.

tr (AT ) = tr (A).c. tr (AB) = tr (BA).d.

tr (AAT ) is the sum of the squares of all entries of
A.

e.

Exercise 2.3.31 Show that AB−BA = I is impossible.

[Hint: See the preceding exercise.]

Exercise 2.3.32 A square matrix P is called an
idempotent if P2 = P. Show that:

a. 0 and I are idempotents.

b.

[
1 1
0 0

]
,

[
1 0
1 0

]
, and 1

2

[
1 1
1 1

]
, are idem-

potents.

c. If P is an idempotent, so is I−P. Show further
that P(I−P) = 0.

d. If P is an idempotent, so is PT .

e. If P is an idempotent, so is Q = P+AP−PAP for
any square matrix A (of the same size as P).

f. If A is n×m and B is m× n, and if AB = In, then
BA is an idempotent.

Exercise 2.3.33 Let A and B be n×n diagonal matrices

(all entries off the main diagonal are zero).

a. Show that AB is diagonal and AB = BA.

b. Formulate a rule for calculating XA if X is m×n.

c. Formulate a rule for calculating AY if Y is n× k.

Exercise 2.3.34 If A and B are n×n matrices, show that:

a. AB = BA if and only if

(A+B)2 = A2 +2AB+B2

b. AB = BA if and only if

(A+B)(A−B) = (A−B)(A+B)

Exercise 2.3.35 In Theorem 2.3.3, prove

part 3;a. part 5.b.
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2.4 Matrix Inverses

Three basic operations on matrices, addition, multiplication, and subtraction, are analogs for matrices of
the same operations for numbers. In this section we introduce the matrix analog of numerical division.

To begin, consider how a numerical equation ax = b is solved when a and b are known numbers. If
a = 0, there is no solution (unless b = 0). But if a 6= 0, we can multiply both sides by the inverse a−1 = 1

a

to obtain the solution x = a−1b. Of course multiplying by a−1 is just dividing by a, and the property of
a−1 that makes this work is that a−1a = 1. Moreover, we saw in Section 2.2 that the role that 1 plays in
arithmetic is played in matrix algebra by the identity matrix I. This suggests the following definition.

Definition 2.11 Matrix Inverses

If A is a square matrix, a matrix B is called an inverse of A if and only if

AB = I and BA = I

A matrix A that has an inverse is called an invertible matrix.8

Example 2.4.1

Show that B =

[
−1 1

1 0

]
is an inverse of A =

[
0 1
1 1

]
.

Solution. Compute AB and BA.

AB =

[
0 1
1 1

][
−1 1

1 0

]
=

[
1 0
0 1

]
BA =

[
−1 1

1 0

][
0 1
1 1

]
=

[
1 0
0 1

]

Hence AB = I = BA, so B is indeed an inverse of A.

Example 2.4.2

Show that A =

[
0 0
1 3

]
has no inverse.

Solution. Let B =

[
a b

c d

]
denote an arbitrary 2×2 matrix. Then

AB =

[
0 0
1 3

][
a b

c d

]
=

[
0 0

a+3c b+3d

]

so AB has a row of zeros. Hence AB cannot equal I for any B.

8Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist such that
AB = Im and BA = In, where A is m×n and B is n×m, we claim that this forces n = m. Indeed, if m < n there exists a nonzero
column x such that Ax = 0 (by Theorem 1.3.1), so x = Inx = (BA)x = B(Ax) = B(0) = 0, a contradiction. Hence m ≥ n.
Similarly, the condition AB = Im implies that n≥ m. Hence m = n so A is square.


